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PRELIMINARY DEVELOPMENT OF AN APPROXIMATION

- el d

PROCEDURE FOR SUPERCRITICAL WING DESIGN .
OPTIMIZATION APPLICATIONS o
Stephen S. Stahara fﬁ
S
Summary .
An investigation was carried out involving the preliminary -
development of an approximation procedure and associated computational 1
codes for rapidly determining approximations to nonlinear, .
three-dimensional flow solutions, with the purpose of establishing a "3
method for minimizing the computational work requirements associated ]
with design optimization studies of supercritical wings. The results X
reported-herd concern the extension of a previously-developed successful =
approximation method for determining accurate approximations to .
two-dimensional nonlinear transonic flows involving the simultaneous ]
change of multiple geometric and/or aerodynamic parameters. The e
specific development involves combination of the nonlinear approximation e
procedure with the FL022 three-dimensional wing transonic flow solver ¢ -
together with the CONMIN optimization /peocedure in a configuration -
suitable for supercritical wing design/optimization studies. Koy ,:45’ . =y
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1. INTRODUCTION

- The remarkable success of advanced computational methods for
L determining accurate solutions to increasingly complex fluid dynamic
lﬁ phenomena has now been well established across a broad range of flow -
problems. What has also become simultaneously apparent with this
success is that a major impediment exists to the implementation of these
emerging codes in highly-repetitive usage applications. This is due to
the excessive computational demands required by their straightforward :
- application. Many such applications simply «cannot afford the - -
:ﬂ computational cost associated with the repetitive use of these 4
higher-level numerical solvers. Thus a need clearly exists for the
development and implementation of sufficiently general and accurate
nonlinear approximation methods that are capable of reducing these
) computational requirements. While this need exists across a spectrum of
.~ aerodynamic uses, it 1is particularly high in supercritical wing
!; optimization applications. For that application, both the Dbasic .
' aerodynamic computation is highly time consuming and the number of
design variables usually required for a satisfactory result 1is large,
resulting in any optimization study becoming computationally expensive
under the best of circumstances, and in many instances prohibitively so.
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i. The final or ultimate goal beyond this preliminary study is to
- develop and demonstrate the means for substantially reducing the overall
s computational requirements necessary for general supercritical wing
- design optimization. It is conceived that these methods would be
- coupled with high run-time general supercritical wing computational flow
. field solvers and would be used in conjunction with them in applications -
- where large numbers of related nonlinear solutions are needed. The time :
saving would be accomplished by development of rapid approximation
methods that would enable the actual number of expensive numerical flow
solutions required in any optimization study to be reduced to a minimum.
- The actual implementation would entail using the rapid approximation
» method together with a certain minimum number of expensive flow
§ solutions to then subsequently predict all of the aerodynamic flow
solutions required by the optimization search process as that procedure
searches through the design variable solution space to reach the optimum

design.
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3 That such procedures are achievable has now been successfully o
- demonstrated for two-dimensional flows. In studies made by the present -
author and reported in Refs. 1-7, a remarkable nonlinear approximation
method was developed and extensively tested on a wide range of both o
continuous and discontinuous nonlinear flow problems. Its ability to NI
: accurately predict nonlinear solutions of primary interest to this study s
»_ was first confirmed in case studies dinvolving a variety of strongly
e nonlinear transonic flows. The method was then coupled with an
e optimization procedure and tested on several two-dimensional design

& -




iy problems. The results demonstrated the potential of the approximation ";_4
H u method to reduce the computational work in such applications by an order \
NI in magnitude with no degradation in accuracy. L

" The work reported here involves the preliminary extension of these

. methods and concepts to the three-dimensional supercritical wing

£ optimization design problem. The specific implementation involves -1

i - development of the nonlinea- approximation method in a form suitable for

o predicting surface properties un three-dimensional supercritical wings;

and then integration of that form of the approximation method with a

wing design optimization procedure. The FLO220PT wing optimization

s procedure recently developed at Ames Research Center was selected for -
this study. That procedure consists of the CONMIN optimization code Lo

: éRef. 8) coupled with the FL022 three-dimensional full potential solver .y

Ref. 9) for determining transonic flows past wing-body combinations.
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2. ANALYSIS

2.1 DESCRIPTION OF THE NONLINEAR APPROXIMATION CONCEPT

The classical approach of developing a perturbation or
approximation analysis -- that is, by establishing and solving a series
of linear perturbation equations in the manner of Van Dyke /Ref. 10) --
appears as an obvious choice for the current application. However,
results from the work reported in Ref. 1 demonstrate that for
applications to sensitive flows such as occur in most transonic
situations, the basic linear variation assumption fundamental to such a
technique is sufficiently restrictive that the permissible range of
parameter variation is so small to be of 1little practical use. An
interesting and novel alternative to the linear perturbation equation
approacy has recently been successfully examined in which a correction
or approximation technique is used that employs two or more nonlinear
base solutions. For the approximation method, the basic perturbation
solution is determined simply by differencing two nonlinear flow
solutions removed from one another by some nominal change of a
particular flow or geometrical quantity. A unit perturbation solution
is then obtained by dividing that result by the change in the perturbed
quantity. Related solutions are determined by multiplying the unit
perturbation by the desired parameter change and adding that result to
the base flow solution. This simple procedure, however, only works
directly for continuous flows for which the perturbation change does not
alter the solution domain. For those perturbations which change the
flow domain, coordinate stretching is necessary to ensure proper
definition of the unit perturbation solution, Similarly, for
discontinuous flows, coordinate straining is necessary to account for
movement of discontinuities due to the perturbation. We will discuss in
detail the importance of = coordinate straining to the approximation
method below.

The attractiveness: of such an approximation method is that it is
not restricted to a linear variation range but rather replaces the
nonlinear variation between two base solutions with a linear fit. This
de-emphasizes the dependence and sensitivity inherent 1in the linear
perturbation equation method on the local rate of change of the base
flow solution with respect to the varied quantity. For many
applications, particularly at transonic speeds, the flow 1is highly
sensitive, and the linear range of parameter variation can be
sufficiently small to be of no practical use. Furthermore, other than
the approximation of a linear fit between two nonlinear base solutions,
this new method is not restricted by any further approximations with
respect to the governing differential equations and boundary conditions.
Rather, it retains the full character of the original methods used to
calculate the base flow solutions. Most importantly, no perturbation
differential equations have to be posed and solved, only algebraic ones.
In fact, it isn't even necessary to know the exact form of the
perturbation equation, only that it can be obtained by some systematic
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procedure and that the perturbations thus defined will behave in some
‘generally appropriate' fashion so as to permit a logical perturbation
analysis. For situations involving perturbations of physical
parameters, such as reported here, the governing perturbation equations
are usually transparent, or at least readily derivable. Finally, in
applying this method it isn't necessary to work with primitive varibles;
rather the procedure can be applied directly to the final quantity
desired. An important qualification of this method is that the two base
solutions required for each parameter perturbation considered must be
topologically similar, i.e., discontinuities or other characteristic
features must be present in both base solutions used to establish the
unit perturbation.

The fundamental idea underlying coordinate straining as it relates
to the application of perturbation methods to nonlinear flows is
illustrated geometrically in Figure 1. In the upper plot on the 1left,
two typical transonic pressure distributions are shown for a highly
supercritical flow about a nonlifting symmetric profile. The
distributions can be regarded as related nonlinear flow solutions
separated by a nominal change in some geometric or flow parameter. The
shaded area between the solutions represents the perturbation result
that would be obtained by directly differencing the two solutions. We
observe that the perturbation so obtained is small everywhere except in
the region between the two shock waves, where it is fully as large as
the base solutions themselves. This clearly invalidates the
perturbation technique in that region and most probably somewhat ahead
and behind it as well. The key idea of a procedure for correcting this,
pointed out by Nixon (Refs. 11 and 12), is first to strain the
coordinates of one of the two solutions in such a fashion that the shock
waves align, as shown in the upper plot on the right of Figure 1, and
then determine the unit perturbation. Equivalently, this can be
considered as maintaining the shock wave location invariant during the
perturbation process, and assures that the unit perturbation remains
small both at and in the vicinity of the shock wave. Obviously, shock
points are only one of a number of characteristic high-gradient
locations such as stagnation points, maximum suction fpressure points,
etc., in which the accuracy of the perturbation solution can degrade
rapidly. The plots in the lower left part of the Figure 1 indicate such T
a situation and display typical transonic presstr-e distributions which -
contain multiple shocks and high-gradient regions. Simultaneously
straining at all these locations, as indicated in the lower right plot,
serves to minimize the unit perturbation over the entire domain
considered, and provides the key to maximizing the range of validity of
the perturbation method.
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2.2 PRZVIOUS APPLICATIONS
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At this point, the approximation concept based on the ideas -
discussed above has both been implemented and thoroughly tested in a s
wide range of problems. In Ref. 1, several candidate approximation o
methods were studied and the most promising method was identified. RRORX
Extensive development and testing of that method was then carried out in O
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Ref. 4 on a 1large number of nonlinear flow problems involving - ]
single-parameter changes of a variety of flow and geometric parameters. T
Subcritical and supercritical flows past isolated airfoils and o
compressor cascades were considered, with particular emphasis placed on T
supercritical transonic flows which exhibited large surface shock ‘
movements over the parametric range studied. Comparisons of the

approximation predictions with the corresponding ‘'exact' nonlinear

solutions indicated a remarkable accuracy and range of validity of the -
approximation method. For example, Figure 2 from Ref. 4 provides a

comparison of results illustrating the remarkable ability of the

approximation method to predict nonlinear supercritical transonic flows.

These results are for surface pressures obtained from full potential

solutions and represent nonlifting flows past several NASA four-digit,
thickness-only airfoils at M_ = 0.820. The results indicated by the 1
dotted and dashed 1lines were obtained for thickness ratios of v = 0.12

and 0.08, respectively. Those results were used to define the unit i :
perturbation required by the approximation method. With that unit ' )
perturbation in hand, the approximation method was then employed to
predict surface pressure results for thickness ratios T = (0.110, 0.105, -
0.100, 0.095). The approximation results, indicated by the open .
symbols, were then compared with full nonlinear results obtained by T
running the full potential solver at those thickness ratios. As can be

seen, the results are essentially identical, in particular, in the s
region of the strong shock. "o

!

The approximation method was next extended (Ref. 6) to treat
simultaneous multiple-parameter perturbations. Extensive testing of the .
method demonstrated remarkable accuracy and range of validity of the RN
multiple-parameter approximation procedure in direct correspondence with T
the previous results obtained for single-parameter changes. T
Additionally, 1initial applications of the multiple-parameter —
approximation method combined with an optimization procedure were also
made to several two-dimensional airfoil design problems. The results
demonstrated the potential of the approximation method for reducing the
computational work in certain applications by an order of magnitude with
no degradation 1in accuracy. Finally, in Ref. 7, the approximation
method, configured in a-form suitable for predicting an arbitrary number
of simultaneous multiple parameter changes, was combined with the - - 4
COPES/CONMIN optimization driver (Ref. 13) and coupled with the NASA U
TSONIC full potential blade-to-blade turbomachinery solver (Ref. 14). A
series of calculations of the combined code, named BLDOPT, have verified
the procedure, demonstrated the accuracy of the approximation-predicted -
results, and established benchmark guidelines of the potential for -
computational savings of the method under the various user options
included in the code In general, the approximation method was found to
be capable of providing an order of magnitude reduction in computational
work in those applications which involved essentially subcritical or
weakly supercritical turbomachinery flows.
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2.3 THEORETICAL FORMULATION: APPROXIMATION PREDICTION OF  SURFACE .
PROPERTIES ON SUPERCRITICAL WINGS '

The underlying reason of the remarkable accuracy of the
approximation method developed in this study lies in the use of
coordinate straining to define the unit perturbation. As shown in S
Figure 1, where the perturbation between two nonlinear solution states T
is displayed graphically as the shaded area between the base and the
strained and unstrained calibration solution, coordinate straining
provides the ability to account accurately for the displacement of a
multiple number of discontinuities and maxima of high-gradient regions
due to a parameter change. This enables the perturbation method to
maintain very high accuracy in regions of high gradients where most
perturbation methods commonly fail, and to maintain that accuracy over
large parametric ranges.

In what follows, we provide a brief account of the theoretical
essentials of the strained-coordinate perturbation concept as configured
and implemented in the present design application. This is to predict
o simultaneous multiple-parameter perturbation flow solutions for surface
L properties of supercritical wings for use in optimized wing design. The

- flow solutions thus considered can contain a total number N of
discontinuities or high-gradient continuous regions.

To proceed with the theoretical basis of the approximation method

as applied to simultaneous multiple-parameter perturbations of flows

containing multiple shocks or high-gradient regions, consider the

formulation of the procedure at the full potential equation level, since
. all of the results presented here are based on that level. Denote the g
‘i operator L acting on the full velocity potential ¢ as that which results R
l. in the three dimensional full-potential equation for ¢, i.e., -

MR \
co ey
i

L[] =0 (1)

If we now expand the potential in terms of zero and higher-order
components in order to account for the variation of M arbitrary
geometrical or flow parameters qj from their base flow values ch

(2)

and then insert these expansions into the governing Equation (1), expand
tne result, order the equations into zero and first-order components,
and make the obvious choice of expansion parameters €5 = AQj we obtain
the following governing equations for the zero and M %irst-order
components
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L{%] =0

(3)
]
Lz[¢xj] + 3qj L[%]) =0

Here Ly 1is a 1linear operator whose coefficients depend on zero-ordeﬁ
quantities and 3L [®01/3qj represents a ‘forcing' term due to the th
perturbation. Actual forms of L1 and the 'forcing' term are provided in
Ref. 1 for a variety of flow and geometry parameter perturbations of a
two-dimensional turbomachine, and in Ref. 15 for profile shape
perturbations of an isolated airfoil. An important point regarding
Equation (3) for the first-order perturbations is that these
equations represent a unit perturbation independent of the actual value
of the perturbation quantity €j.

Appropriate account of the movement of a multiple number of
discontinuities and maxima of high-gradient regions due to the changes
in the parameters qj is now accomplished by the introduction of strained
coordinates (s,t) in the form

M
s+ I
J=1
M
t+ I
j=1

»
"

ejx,(s.t)
(4)

<
n

ejyl(s9t)

where

N
xi(s,t) = I 8x.(t)x;.(s,t)
i=1 1
(5)
N
yifs,t) = ¢ éyiy;i(s,t)

i=1

and sjéxi, £jdyi represent jndividual x and y displacements due to
perturbation of the q'th parameter of the N strained points, and
x15(s,t), yi14(s,t) are straining functions associated with each of the N
strained points. For the applications considered here, we have assumed
that all discontinuities such as shock waves or other high-gradient
region maxima occur essentially normal to the wing planform so that only
the (x,y) coordinates require straining. This simplification is not
strictly necessary and could be relaxed in future applications.
However, the effect of this assumption on the prediction of surface
properties via the approximation method is known from extensive studies
of the two-dimensional case to be of higher order for most optimized
design flow situations of aerodynamic interest. Introducing the
strained coordinate Equations (4) and (5) into the expansion formulation
leaves the zero-order result in Equation (3) unchanged, but results in a
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% change of the following form for the jth perturbation

]

$,.] + [ + — =

Lal ’J] LzJ[ 0] 3; L®] =0 (6)
- Here the operators are understood to be expressed in terms of the
. strained (s,t) coordinates, and the additional operator sz arises
+ specifically from displacement of the strained points. In Refs.“12 and

15, specific expressions for sz are provided for selected perturbations
involving transonic small-disturbance and full-potential equation
formulations. The essential point, however, with regard to perturbation
Equation (6) expressed in strained coordinates is that it remains valid
[ as before for a unit perturbation and independent of ej.

g In employing the approximation method, Equation (6) for the jth unit N

.- perturbation is solved by taking the difference between two solutions
i obtained by the full nonlinear procedure after appropriately straining
the coordinates. If we designate the solutions for some arbitrary
[ dependent flow quantity Q as base Qo and calibration Qc;, respectively, B
S of the varied independent parameter qj, we have for tﬂe predicted flow -
at some new parameter value qj for all the M parameters

M
Qx,y) = Qofs,t) + I e5Qu;(s,t) + ... (7)
j=1

where

ch(i,}’yj) “ Q (Sot)

Qug(s,t) = 3 (8) N
L, L
Xj(t), =s+ 1'51 Ejéxi(t)X11‘(svt) (9) .

N S
yj(t) =t + ifl Ejéyiyx.i(s,t) (10) {_';::vj:;-.
.
M e, ;;‘L‘~I
M e, o
b+ I 7% (yi(t) -t 12 B
Y je1 gj (.YJ( ) ) (12) ::::- .
9 1131;
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Ej = qu - ch' (13) _
L
€5 = Q5 = Qo (14)
We note that in order to determine the first-order corrections - ==
Q:3(s,t), we require one base and M calibration solutions in which the s
calibration solutions are determined by varying each of the M arbitrary
independent parameters qi by some nominal amount from the base flow
value while keeping the o%hers fixed at their base values. In this way, R,
the first-order corrections Q:j can be determined from Equation (8) Tl
where ch is tgefined as the calibration solution corresponding to
changing“the j“" parameter to a new value qcy» Xj 1is the strained -
coordinate pertaining to the Qcj calibration so]uiion, and €5 = Q¢4 - -
qoa represents the change in the a3 parameter from its base flow valte. -
N Th S, - ....
_” - [ 0 ) : -
é?f Ejdxi(t) = (xi(t) - xi(t))j (15) '
5x, (1) = L (6E(t) - x°(t) (16) o
J e
- = (L L ljf:i‘
Ej‘s'yi (yTi yT'i)J (17) -‘
3
sy, = 2k (05 - ¥b) (18) :
Cj ¥; -j YT-i -YT-] j

where £€j6xj(t) given in Equation (15) represents the x displacement of

the ith invariant line at the spanwise t location in the jth calibration =
solution from its base flow location due to the selected change £j in —_—
the qj parameter given by Equation (13), €36xi(t) given in Equation (16) o
represents the predicted x displacement of the ith invariant line at the
spanwise t from its base flow location due to the desired change €j in
the qj parameter given by Equation (14), €58y; given in Equation (17)
- represents the y displacement of the tip of the ith invariant line in
o the jth calibration solution from its base flow 1location due to the
3 selected change £ in the qj parameter given by Equation (13), and ej0y5 Lo
given in Eaquation (18) represents the predicted y displacement of the L
.- tip of the ith invariant line from its base flow location due to the .
o desired change €; 1in the q; parameter given by Equation (14), x,;(s,t)

- is a unit-order siraining fugction having the property that
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xagxpet)= {g K71 (17)

which assures alignment of the  iM invariant line at the t

spanwise location between the base and calibration solutions, and y i(t)
is a unit-order straining function having the property that

yiglo} ) = {0 k31 (28)

th

which assures alignment of the tip of the i~ invariant 1line between

the base and calibration solutions.

In addition to the single conditions given by Equations (17) and
(18) on the straining functions, it may be convenient or necessary to
impose additional conditions at other locations along the contour. For
example, it is usually necessary to hold invariant the end points along
the contour, as well as to require that the straining vanish in a
particular fashion in those locations. A1l of these conditions,
however, do not serve to determine the straining uniquely. The
nonuniqueness of the straining, nevertheless, can often be turned to
advantage, either by selecting particularly simple classes of straining
functions or by requiring the straining to satisfy further constraints
convenient for a particular application.

The fact of nonuniqueness of straining function, however, raises a
further question of the dependence of thefinal approximation-predicted
result on choice of straining function. An initial example of the
effect of employing two different straining functions for a strongly
supercritical two-dimensional flow was provided in Ref. 12, and in
Ref. 4 a detailed examination was made of the dependenceof approximation
results on several classes of different straining functions. Although
it can be demonstrated (Ref. 3) that the final approximation-predicted
result obtained when employing strained coordinates is formally
independent of the particular straining function used -- provided that
the straining function moves the invariant points to the proper
locations -- the results of Ref. 4 demonstrate that, under certain
conditions, particular classes of straining functions can induce
spurious approximationresults. The underlying reason is that, while the
approximation-predicted results at and in the vicinity of invariant
points are independent of the choice of straining function (provided
invariant point locations are preserved), .some classes of straining
functions have the undesirable property of producing unwanted straining
in certain regions removed from the invariant points. The correction
for this deficiency, which was found in Ref. 4 and has proven effective
in all case studies undertaken, is to employ linear piecewise-continuous
straining functions. This both preserves the accuracy of the




approximation results in the vicinity of the invariant points, and
introduces no excessive straining in regions removed from those
locations.

For linear piecewise-continuous straining functions, the functional
forms of the straining can be compactly written. For the x displacement
we have

- 0
3 xi(t)

x$+1(t) - xg(t)

xg+1(t) - S

*ﬁ”‘s*‘xo

e * () - x§(t))y +

'(ﬁu“)-xaﬂﬂh}"hhﬁﬂ-s)-Hc-xyn)uw

where H denotes the Heaviside step function. As discussed above, it is
usually necessary to hold invariant both of the end points along the
contour in addition to the points corresponding to discontinuities or
high-gradient maxima. Consequently, for the results reported here, the
array of x invariant points in the base and calibration solutions have
been taken as :

x3(t) = {0, x3(t)y x8(t), weey X2AL), 1)
(20)

xig(t) = 0, x§5(t), x§5(t), oouy Hps(1), 1)

where the contour length at the spanwise location t has been normalized
to unity and where n is-the number of invariant points along the contour
exclusive of the end points.

Similarly, for the y displacements of the tips of the discontinuity
lines we have

#oot tonp

= 1 c 0 1

. = + . - .+

yi(t) =t l N (yTi yTi)J TR
i+l i i+l i

. (y& -y Hiye - t)« H(t - y;° 21
(yTi‘l‘l yT'Hl)j} (yT1+1 t) (t yT'i) (21)
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where the spanwise locations of the tips of the discontinuity lines in "f;'; -
the base and calibration solutions have been taken as ™

.‘/1"i = UT;’ .YT20 ‘ng’ seey .Y-rn}

(22) DR
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3. RESULTS

Because the ultimate utility of the approximation methods being
developed in this preliminary investigation lies in engineering design
of optimized supercritical wings, the primary objective of the current
study was to examine the accuracy and range of validity of the
approximation method in test cases characteristic of that environment.
The objective here was to better understand the approximation method's
present strengths and to uncover any of its weaknesses. Toward that
end, we have tested the approximation method in a stand-alone mode in
several supercritical wing case studies involving the simultaneous
change of multiple parameters comprised of both flow and geometric
quantities. As with the previous testing of the approximation method in
two-dimensional applications, emphasis was placed on transonic flows
that are strongly supercritical over the parametric range studied. This
was done so as to provide as severe a test as possible. In addition to
the stand-alone testing of the approximation method, the method was
integrated with the FL0220PT using optimization procedure which consists
of the FL022 three-dimensional full potential solver (Ref. 9) coupled
with the CONMIN optimization code (Ref. 8). Next, several preliminary
optimization case studies were carried out to examine the approximation
method's ability to perform in an actual supercritical wing design
environment.

3.1 APPROXIMATION METHOD PREDICTION OF SUPERCRITICAL WING PRESSURES

Several case studies were undertaken to examine the accuracy of the
approximation method in predicting strongly supercritical transonic
flows past wings. The particular wing geometry configurations selected
for study, although not specifically directed toward a
currently-operational design, were chosen to be representative of modern
transport aircraft wing designs. Figure 3 displays the shape of the L
planform that was selected. The section profiles of the wing consisted "
of NACA 65A215 profiles, with the maximum thickness of the sections -
varying linearly across the span from t = 0.08 at the root chord to 1 = o

0.06 at the tip.

In Figure 4, we present a comparison of approximation-predicted and _

exact nonlinear results for the simultaneous perturbation of oncoming -
Mach number and angle of attack of highly-supercritical flows past the R
wing shown in Figure 3. The base flow chosen for these results is at M R
= 0,80 and a= 0 , while the calibration solutions required to determine
the unit perturbations in M_and o where selected respectively at (M_,q) o
= (0.82,0° and (0.80,3°). A1l of these flow field solutions, as well SRR
as those employed 1in the optimization studies presented below, were e
obtained from the FL0O22 code employing a medium density mesh with a T
total of 60 chordwise points, 11 spanwise, and 12 normal mesh planes. RS
These flow solutions were then used together with the approximation NSRS
method to predict the upper surface pressure distribution results at IO
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: (M) = (0.85,1°) displayed as the open circles in Figure 4 at the r
various spanwise locations indicated. Those results are meant to be S
compared with the corresponding “exact" nonlinear results which are . {
indicated as the solid lines. In the approximation results, the leading <
and tra2iling edges, and the shock point were held invariant. The shock NN
point locations for this example, as well as for all of the results AR
presented here, were determined as the point where the pressure RN
coefficient passed through critical with compressive gradient. o

With regard to the results, we note that the comparison between the
approximation-predicted and the exact nonlinear result is quite good, in
particular in the region of the shock. The approximation method is able
to predict accurately both shock location and the critical post-shock e
behavior. Results for the region from the leading edge to points ahead -
of the shock are essentially identical to the exact nonlinear solution, :
as are results aft of the post-shock region. We note that the
particular parameter values of (M_,a) = (0.85,1°) selected for the
predicted solution represent reasonably substantial excursions from the
base and calibration values. Nevertheless, the approximation method is
able to predict simultaneous parameter variations over this range v
accurately. s

In Figure 5 we present analogous results for a three-parameter
perturbation of strongly supercritical full-potential flows past a
similar wing as that shown in Figure 3, except that the wing tip chord
ratio for the new wing was increased to 0.75 from 0.50. These results
involved the simultaneous perturbation of oncoming Mach number, angle of
attack, and wing thickness ratio. The base flow parameters involved an
oncoming Mach number of M_ = 0.80, angle of attack a = 1°, and root
chord thickness ratio T = 0.,70. The three calibration solutions
required to account for changes in the three varied parameters involved
the following parameter value changes (M_,a,7) = (0.82,2°,0.85). For
example, the calibration solution for Mach number was run at the new o
Mach number M_ = 0.82, with the other two parameters held fixed at their S
base fiow values. Thus, the parameter values for the Mach number o
calibration solution were (M_,a,t) = (0.82,1°,0.70), with corresponding e
values for the other two calibration solutions. The comparison of the Y
approximation-predicted and exact nonlinear results are for the
parameter values of (M ,a,t) = (0.85,0°,0.80), and are shown at the
various spanwise locations 4n Figure 5. This particular set of flows
was agein selected, as in the previous example, because of the presence R
of 2 strong shock across the span and 2 high sensitivity to parameter RS
change. As with the previous results shown in Figure 4 for two T
simultaneous parameter variations, we observe that the approximation - 4
predictions are once again notably accurate for this three parameter L
perturbation. The approximation method is able both to track the
location of the shock, as well as to opredict the pressure
characteristics in the pre-shock and post-shock regions. We note with el
regard to the shock topologies in these examples that both of the case )
studies presented involve full span shocks. Finally, we note that these T
results were obtained with the approximation method configured in a -l
modified and improved form from that previously reported 1in References -
1-7. This involved the development and incorporation of a more accurate -
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invariant point straining procedure than was heretofore used. This
improvement utilizes a more accurate explicit straining point 1location
procedure for the final approximation predicted result, in contrast to
the usual implicit procedure employed in all the previous realizations
(References 1-7, 11, 12, 15) of the method.

This feature considerably enhances the capability and generality of
the method. The explicit straining procedure, which in essence
specifies the points at which the final solution results are determined
rather than allow these points to be determined implicitly from the
straining of the base flow points as was done standardly in the past,
avoids a double interpolation of the approximation result, In a series
of tests on highly-supercritical airfoils, this new procedure has been
found to yield significantly improved accuracy in high-gradient regions
at only a very slight increase in computational work.

One of the most important results to emerge from the calculations
involved in these case studies was the discovery of a particular
deficiency of the approximation method, and the subsequent development
of the means to improve the accuracy of the approximation predictions in
shock regions and other high gradient regions. The improvement in the
basic prucedure developed to meet these requirements consists of
employing additional invariant points in those high gradient locations.
For example, it was found that by characterizing a shock which has a
post-shock expansion region, as sketched below,

c. - |

v %o
- cp*
)7 EE

with five dinvariant points -- which correspond to: (:) pre-shock
minimum pressure, (:) maximum gradient point, (:) post-shock maximum
pressure, (:) post-shock minimum expansiopn pressure location, and (:)
point of inflection between points and -- rather than just the
one point corresponding to the critical pressure location, which was
standardly done in the past; that significantly improved approximation
results are obtained 1in the shock region for extreme solution
extrapolations. The primary difficulty of this five point
characterization of the shock 1is that at this time it dis not
automatically implemented in the present method, but requires user
intervention. Consequently, this more accurate procedure was not
employed in the optimization studies reported below. In future work
this improvement should be automated and included in the method.
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. 3.2 PRELIMINARY APPLICATION OF APPROXIMATION METHOD TO SUPERCRITICAL
" K WING OPTIMIZATION

The uitimate general utility of the approximation methods developed
and evaluated here lies in their application to problems involving the
repetitive use of computationally-expensive codes to determine a large

e number of related nonlinear flow solutions. The concept is that these

R. approximation methods would be coupled with these high run-time
computational codes and used in conjunction with them in those
applications to reduce the computational requirements substantially.
This would be accomplished by employing the approximation method to
reduce to a certain minimum the number of the computationally-expensive
solutions required to accomplish the application.

The specific application of the approximation concept in this study
is toward the general supercritical wing design optimization problem,
One of the major objectives of the present investigation was the
demonstration that the approximation method is capable of working R
effectively 1in such an important and practical nonlinear design .
environment, Toward that objective, the approximation procedure was .-
implemented as follows. First, the approximation method was configured AR
in a form suitable for prediction of surface properties on oy
three-dimensional supercritical wings. Next, that method was then 0
- integrated with a proven wing design optimization procedure capable of
'a Y treating supercritical wings. The optimization procedure selected was
the FLO220PT method recently developed at Ames Research Center. That —
procedure consists of the CONMIN optimization driver (Ref. 8) coupled Sl
with the FL022 full potential three-dimensional flow solver (Ref. 9).
The latter method is capable of determining transonic flows past either
o wing alone or wing-body combinations. Finally, applications "were made
' L of the combined procedure to several case studies involving wing section
profile optimization. The objectives of these initial applications were -
to demonstrate the workability of the approximation concept in a
S supercritical wing design environment, provide a benchmark of the
S potential for computational savings of the combined
SO approximation/optimization procedure for some typical design problems,
D determine the accuracy of the approximation-predicted results for these
T cases, and finally identify any areas of improvement required for more 1
N general wing optimization studies. ;g;

- The particular wing design optimization problems selected for study
= involved the alteration of a baseline sectional profile shape at various 4
b spanwise locations along the wing by adding to that baseline profile a ]
o set of shape functions according to the relation =

Ty

L. H
o 2x) = % (x) + T (V.- 1) Fylx) (23)

EL A
3
.

where Zo are the ordinates of the baseline profiles, Fj are the shape ﬂjﬂj
functions, and the coefficients DV; are the design variables. Those ﬁif
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values are determined by the optimization program as a result of a
search through design-variable solution space to achive a desired design
improvement. Here for convenience we have chosen the coefficients of Fj
to be (DVi-1) rather than DV;. The general class of geometric shape
functions employed here, and which have been found to be successful in
previous applications involving optimization of supercritical airfoil
sections (Ref. 16), consists of exponential decay functions and
sinusoidal functions. These are of the general form (1-x)-xP/e8X and
sin (nxT)N, where the exponents p, q, r, and n are selected to provide a
desired maximum at a particular chordwise location. The exponential
functions are generally employed to provide adjustments near the leading
edge, while the sinusoidal functions are used to provide maximum
ordinate changes at particular chordwise stations. Illustrations of the
chordwise variation of typical members of these classes of shape
functions are provided in Figure 6, and it can be seen that these
functions smoothly concentrate ordinate thickness at selected locations.

A strategy which has proved convenient for performing optimization
studies involving aerodynamic performance parameters (Ref. 16) has been
to recontour the profile shape so as to tailor the surface pressure
distribution to conform to a desired distribution. This type of
objective provides local control over the basic aerodynamic surface flow
property of importance, and provides a means of attempting to achieve
aft pressure gradients sufficiently weak to avoid separation. An
important corollary advantage of using such an objective is that viscous
separation can be minimized. This allows use of an inviscid aerodynamic
flow solver 1in the optimization process rather than a much more
computationally-expensive viscous solver, and assures that the
optimization result thus obtained at the dinviscid level s
representative of the actual flow.

In such studies, the characteristics that are primarily sought
after in the optimization process are the minimization of both the peaky
behavior near the leading edge and the compressive gradient on the aft
portion of the suction surface that typically exist on the baseline
profiles considered. This is illustrated schematically in Figure 7.

Consequently, for these preliminary case studies the overall
performance objective was, through modification of the surface contour,
to tailor the pressure distribution along a portion of the upper surface
so as to conform to a desired distribution. The objective function was
taken as the minimization of the mean squared error between the
predicted and desired surface pressure distribution, i.e.,

K
0B = T [C (XK) - CP

p (x )12 (24)
K=1 predicted

desired

where K represents the number of chordwise locations Xy where desired
and calculated surface pressures are compared.
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In developing the combined APPROX/FLO220PT program, we have
incorporated several features that enhance the robustness and user use
of employing the code. These ideas were based on our experience with
the approximation method in two-dimensional optimization applications
(Ref. 7) for nonlinear internal flows. One of these features was the
development and use of the explicit straining procedure mentioned
previously. The most important of the other features relates to the way
that the calibration solution matrix required by the approximation
method is defined. Two separate options have been incorporated in the
current program. The first option employs the approximation method in
its usual fashion whereby the user specifies the matrix of calibration
flow solutions to be determined. These solutions correspond to nearby
(to the baseflow) solutions associated with the separate variation of
each of the M design variables appropriate to the optimization problem
under consideration. With this option, calibration matrix definition
can be accomplished by either individually specifying all the design
variables or alternatively by employing a constant-value calibration
step size which increments each design varible by a fractional change of -
its base flow value. r ]

The second of these options provides the wuser with a ubasica11y
automatic hands-off procedure for using the perturbation method. Under

this option, the user is not required to preselect and input the design .
variable values for the calibration solution matrix. Rather the matrix C
is determined completely by the program in the following way. For the —
first optimization cycle, the approximation method is not used. Full MR |

nonlinear aerodynamic solutions are determined by the flow field code as
required as input for the gradient and search optimization calculations. 1
After the first search cycle is complete and a new design point 1
determined, design variable values for the calibration solution matrix e
are then determined based on the direction that the first search cycle ""”T
has taken. We have in series of tests involving two-dimensional airfoil .
optimization studies verified that such a procedure results in an
extremely good de“inition of the calibration solution matrix. The e
result is that the design variable solution space which is subsequently © e
searched on the second and successive optimization cycles usually S
requires only very reasonable interpoletions/extrapolations within the
design variable parameter range of the defined solution matrix, T
Consequently, this option provides an automatic, wuser-invisible .
procedure for defining the calibration solution matrix. It does,
however, require the additional computational cost of one optimization
search cycle using the exact nonlinear aerodynamic flow solver in “
contrast to the first option which requires the user input of the design .
variable values for the calibration sclutions. Nevertheless, this - ~1
second option provides a highly accurate and basically hands-off means
of employing the approximation method, and we recommended it for use
when little or no information is available on search direction from
previous or related calculations.
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The wing design problem that the combined APPROX/FLO220PT program
has been initially directed toward is the performance of wing section
profile design optimization at a specified number N of selected spanwise
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stations along the wing. As shown below, this would proceed S
sequentially one station at a time from root to tip. e

[ ]
! | I | B
i | — )
| = ' l
| | 1
| | 1
by
I | | {
] -
R 1
In this procedure the effect of profile changes of outboard stations on : '
previously-optimized inboard stations is initially ignored, but — - 4
subsequently checked after the final outboard station is optimized. If - .4
the optimization changes on the outboard stations have resulted in a R
degradation of the performance of the inboard stations, then the s
procedure can be repeated with another inboard to outboard sweep using e
the final design variable information obtained from the previous pass. T
Previous experience has shown that for wings swept at approximately 35° -
or more, a single optimization pass is sufficient. Wings of lower sweep 4! g
may require an additional pass.
For the initial application of the combined
approximation/optimization method, we have tested the complete procedure
on a five design variable probiem involving supercritical surface
pressure tailoring for transonic fiows at M_ = 0.85 and a = 1° past the ~ -
wing described previously in Figure 3. We employed the following shape "]
functions .
S 5 . ri 3 . d
Z(x) = Ipace(X) + ifl (DV; - 1) sin (7x ') (25) ]
]
with the base profile shapes of the wing sections taken as a NACA 65A215 ) “4
profile and the exponents ri = (0.301, 0.431, 0.576, 0.756, 1.000). =L
These particular sinusoidal shape functions achieve their maxima at VL
(10%, 20%, 30%, 40%, 50%) of local chord. The desired pressure ]
distribution chosen as the target was taken simply to be 3
B ;
Cp (x/c) = -0.10 , 0.05< x/c< 0.50 (26) L
desired :_j
sl
at the selected spanwise stations to be optimized. : SI:*
N
.«
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In Figures 8 and 9 we demonstrate, in terms of final design
variable accuracy and potential computational time savings, comparisons
of results between the approximation method and those obtained when
using the exact nonlinear solutions for this 5 design variable
supercritical wing surface pressure tailoring case study. The
optimization was performed at the root chord station using the program
option to automatically define the calibration solution matrix. Figure
8 provides a comparison of the approximation predicted final design
variables and objective function (@) with those obtained with not using
the approximation method but employing exact nonlinear full potential
aerodynamic solutions throughout (O). These are the results after 5
optimization cycles. We note the essentially exact correspondence
between the final design variable values. Corresponding comparison of
the objective function shown on the right, in fact, indicates a slightly
better result obtained by the approximation method (m). In Figure 9,
the corresponding comparison of computational work in CPU seconds and
objection function reduction per optimization search cycle is provided.
Here we see that after the first cycle is complete, the approximation
procedure actually requires less time to define the calibration matrix
solution and complete the second search than does the full nonlinear
flow field method with the same reduction in objective. From that point
on, the approximation method requires essentially no time to complete
searches 3 to 5, and then &n additional increment to calculate the final
design result wusing the nonlinear flow field solver. Time savings
achieved with the approximation method for this case is 58% of that
required for the exact nonlinear result.
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Figures 10 and 11 provide similar results for the spanwise station
y/s = 0.52. Again we observe that the approximation procedure is able
to provide very accurate results in comparison to the results obtained
when not employing the approximation method but using the nonlinear flow
solver throughout the optimization search. Time savings for this case
was 55% of that required for the exact nonlinear result.

In Figures 12-15, we have provided analogous comparative results of
the approximation method obtezined when employing the option of
specifying the calibration solution matrix. In this case study, we have
used a uniform design veriable stepsize increment of DV = -0.001 for
each of the five design variables. This represents a better than wusual
estimate (see Figures & and 10) of the calibration matrix in the sense
that only modest interpolations and extrapolations will be required of
the approximation method by the optimization procedure as it searches
through design solution space for the optimum. Without some a priori
knowledge of the direction of the optimization search, large
interpolations and extrapolations are often required of the
approximation method. This usually results in a subsequent degradation
in accuracy of the approximation predictions wunder this option. For
this case study, as might be anticipated from the above discussion, the
approximation-predicted desinrn variables are in as good agreement with
the exact nonlinear result, as they were in the previous comparisons
which employed the program option to automatically define the
calibration solution matrix. The computational time savings in this
instance are shown in Figures 13 and 15, and as expected are greater
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(68% vs. 58% at y/s = 0.0; 64% vs. 55% at y/s = 0.52) than before due
to the savings of essentially one optimization cycle involving the use
of the exact nonlinear flow solver.

A series of related optimization studies analogous to those
presented in Figures 9-15 was next undertaken. A common problem quickly
became apparent in these studies that 1led to inaccuracies in the
approximation-predicted results. This problem was related to the sudden
occurrence, during the optimization process, of additional shocks. For
example, this could be a high strength shock appearing near the wing
leading edge, often forming dinitially at the wing tip and working
inboard, or it could be the formation of an additional shock near the
wing midchord line that would intersect the main shock. Several of
these more complex shock topologies that occurred are illustrated in the
bottom of Figure 16, together with the more usual shock patterns that
were observed. Although the approximation method is capable of
simultaneously treating multiple shock and high gradient regions, a
fundamental limitation of the method as it is presently constituted is
that the basic topology of the solutions that it is approximating must
remain the same. This means that, over the range of parameter variation
that the method is to be employed, no shocks or other high-gradient
regions be either added or lost. This limitation appears not to be
satisfied for many of the supercritical wing optimization problems of
interest, in which an additional shock can suddenly appear during the
optimization process, but disappear or weaken considerably as the
optimized design point is approached. Our experience in two-dimensional
supercritical flow optimization problems has been that this phenomena
almost never occurs. It appears in the three-dimensional problem that
the additional degree of freedom that the flow has allows these sudden
occurrences to happen when sensitive supercritical flows are
simultaneously perturbed in various ways. The remedy to this is to
extend the basic capability of the approximation method so that such
topology changes can be allowed. This is feasible, but will require an
extension of the method in which additional calibration solutions are
employed that allow the approximation solution to cover more than one
topology. Generally speaking, one additional calibration solution
matrix will be required for each topology change. Development of the
approximation method, in a2 fashon that can automatically sense and
extend itself to cover topology changes, appears to be a necessary
refinement in order to extend the utility of the approximation method to
general three-dimensional supercritical wing optimization design
problems.
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4. CONCLUSIONS AND RECOMENDATIONS i'{ﬁ

)
An investigation was conducted dinvolving the preliminary f;ﬂi
development of approximation procedures for determining rapid and N,

accurate approximations to three-dimensional transonic flows past
supercritical wings. The ultimate purpose is to establish a method for
minimizing computational requirements associated with optimization
design studies of supercritical wings. The procedures being developed
employ unit perturbations, determined from two or more nonlinear ‘base’
solutions which differ from one another by a nominal change in some N
geometry or flow parameter, to predict a family of related nonlinear )
solutions which can be either continuous or discontinuous. The results

reported here relate to the extension of the previousiy-developed

successful method for multiple-parameter two-dimensional perturbations:

(1) to simultaneous multiple-parameter three-dimensional perturbations, e
and (2) to the preliminary application of the multiple-parameter v
three-dimensional procedure in combination with the FLO220PT vt
optimization procedure to some initial design problems. L

Calculations based on three-dimensional full-potential nonlinear
solutions have been carried out to establish the accuracy and range of
validity of the multiple-parameter three-dimensional capability. These —
involved flows past transport aircraft wings dinvolving simultaneous L
changes in both flow and geometric parameters, with attention focused on - SR
strongly supercritical situations involving large surface shock AR
movements over the parameter range studied. Preliminary applications of e
the multiple-parameter perturbation method coupled with the FLO220PT T
optimization procedure were made to wing design problems in order to -
examine the capability of the method to produce accurate results in a ~
typical design environment, and also to evaluate its potential for L
computational savings. This was focused primarily on supercritical case
studies involving multiple-design variables. Sensitivity studies were
also performed to examine the accuracy dependence of the perturbation
method on the choice of the initial calibration solution matrix.

Comparisons of the multiple-parameter perturbation results with the
corresponding ‘exact' nonlinear solutions display good accuracy and
indicate a large range of validity for those situations where the basic
flow topology does not change over the parametric range studied. This o
is in direct correspondence with previous results for strongly ,
supercritical two-cimensional flows. The preliminary case studies of
the multiple-parameter perturbation method combined with optimization
procedures have clearly demonstrated the capability of the method to
work accurately in a design environment, and have also established the
methods' potential for reducing the computational work required in such
applications by factors approaching an order of magnitude. Sensitivity
studies indicate that for supercritical flows, although the choice of
the initial calibration matrix is important, the approximation
predictions can nevertheless maintain reasonable accuracy even for
poorly-selected calibration matrices. Because general supercritical




e
wing optimization problems often involve changing shock and/or .
high-gradient region topologies, it appears that an extension of the . —
present method is appropriate and needed to treat this more general o
probiem.

Based on these results, we conclude that approximation methods Dol
formulated on these ideas are both accurate and clearly workable in RN
design environments, and can provide the means for substantially =
reducing the computational work required in such applications. We .o

suggest the development of the combined multiple-parameter approximation
procedure and optimization methods into a robust design tool for
supercritical wing design.
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